Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: insights into mechanisms of general viral fusion and inhibitor design.

Identifieur interne : 001C20 ( Main/Exploration ); précédent : 001C19; suivant : 001C21

Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: insights into mechanisms of general viral fusion and inhibitor design.

Auteurs : Halil Aydin [Canada] ; Dina Al-Khooly ; Jeffrey E. Lee

Source :

RBID : pubmed:24519901

Descripteurs français

English descriptors

Abstract

Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS-coronavirus (SARS-CoV). SARS-CoV entry is facilitated by the spike protein (S), which consists of an N-terminal domain (S1) responsible for cellular attachment and a C-terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS-CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site-directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH-independent retroviral fusion proteins, SARS-CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS-CoV S2 analysis showed that specific hydrophobic positions at the C-terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C-terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C-terminal hydrophobic residues led us to identify a 42-residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation=0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections.

DOI: 10.1002/pro.2442
PubMed: 24519901


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: insights into mechanisms of general viral fusion and inhibitor design.</title>
<author>
<name sortKey="Aydin, Halil" sort="Aydin, Halil" uniqKey="Aydin H" first="Halil" last="Aydin">Halil Aydin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Al Khooly, Dina" sort="Al Khooly, Dina" uniqKey="Al Khooly D" first="Dina" last="Al-Khooly">Dina Al-Khooly</name>
</author>
<author>
<name sortKey="Lee, Jeffrey E" sort="Lee, Jeffrey E" uniqKey="Lee J" first="Jeffrey E" last="Lee">Jeffrey E. Lee</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24519901</idno>
<idno type="pmid">24519901</idno>
<idno type="doi">10.1002/pro.2442</idno>
<idno type="wicri:Area/PubMed/Corpus">001A59</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001A59</idno>
<idno type="wicri:Area/PubMed/Curation">001A59</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001A59</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001874</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001874</idno>
<idno type="wicri:Area/Ncbi/Merge">000C84</idno>
<idno type="wicri:Area/Ncbi/Curation">000C84</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000C84</idno>
<idno type="wicri:Area/Main/Merge">001C33</idno>
<idno type="wicri:Area/Main/Curation">001C20</idno>
<idno type="wicri:Area/Main/Exploration">001C20</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: insights into mechanisms of general viral fusion and inhibitor design.</title>
<author>
<name sortKey="Aydin, Halil" sort="Aydin, Halil" uniqKey="Aydin H" first="Halil" last="Aydin">Halil Aydin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Al Khooly, Dina" sort="Al Khooly, Dina" uniqKey="Al Khooly D" first="Dina" last="Al-Khooly">Dina Al-Khooly</name>
</author>
<author>
<name sortKey="Lee, Jeffrey E" sort="Lee, Jeffrey E" uniqKey="Lee J" first="Jeffrey E" last="Lee">Jeffrey E. Lee</name>
</author>
</analytic>
<series>
<title level="j">Protein science : a publication of the Protein Society</title>
<idno type="eISSN">1469-896X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Crystallography, X-Ray</term>
<term>Humans</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Membrane Fusion</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Stability</term>
<term>Protein Structure, Tertiary</term>
<term>SARS Virus (chemistry)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (physiology)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
<term>Spike Glycoprotein, Coronavirus (chemistry)</term>
<term>Spike Glycoprotein, Coronavirus (genetics)</term>
<term>Static Electricity</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cristallographie aux rayons X</term>
<term>Données de séquences moléculaires</term>
<term>Fusion membranaire</term>
<term>Glycoprotéine de spicule des coronavirus ()</term>
<term>Glycoprotéine de spicule des coronavirus (génétique)</term>
<term>Humains</term>
<term>Interactions hydrophobes et hydrophiles</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse dirigée</term>
<term>Pénétration virale</term>
<term>Stabilité protéique</term>
<term>Structure tertiaire des protéines</term>
<term>Syndrome respiratoire aigu sévère (virologie)</term>
<term>Séquence d'acides aminés</term>
<term>Virus du SRAS ()</term>
<term>Virus du SRAS (génétique)</term>
<term>Virus du SRAS (physiologie)</term>
<term>Électricité statique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Crystallography, X-Ray</term>
<term>Humans</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Membrane Fusion</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Stability</term>
<term>Protein Structure, Tertiary</term>
<term>Static Electricity</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cristallographie aux rayons X</term>
<term>Données de séquences moléculaires</term>
<term>Fusion membranaire</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Humains</term>
<term>Interactions hydrophobes et hydrophiles</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse dirigée</term>
<term>Pénétration virale</term>
<term>Stabilité protéique</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Virus du SRAS</term>
<term>Électricité statique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS-coronavirus (SARS-CoV). SARS-CoV entry is facilitated by the spike protein (S), which consists of an N-terminal domain (S1) responsible for cellular attachment and a C-terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS-CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site-directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH-independent retroviral fusion proteins, SARS-CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS-CoV S2 analysis showed that specific hydrophobic positions at the C-terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C-terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C-terminal hydrophobic residues led us to identify a 42-residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation=0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Ontario</li>
</region>
<settlement>
<li>Toronto</li>
</settlement>
<orgName>
<li>Université de Toronto</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Al Khooly, Dina" sort="Al Khooly, Dina" uniqKey="Al Khooly D" first="Dina" last="Al-Khooly">Dina Al-Khooly</name>
<name sortKey="Lee, Jeffrey E" sort="Lee, Jeffrey E" uniqKey="Lee J" first="Jeffrey E" last="Lee">Jeffrey E. Lee</name>
</noCountry>
<country name="Canada">
<region name="Ontario">
<name sortKey="Aydin, Halil" sort="Aydin, Halil" uniqKey="Aydin H" first="Halil" last="Aydin">Halil Aydin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C20 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C20 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24519901
   |texte=   Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: insights into mechanisms of general viral fusion and inhibitor design.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24519901" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021